Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two sharp double inequalities for Seiffert mean

* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we establish two new inequalities between the root-square, arithmetic, and Seiffert means. The achieved results are inspired by the paper of Seiffert (Die Wurzel, ...

متن کامل

Inequalities Among Logarithmic-Mean Measures

In this paper we shall consider some famous means such as arithmetic, harmonic, geometric, logarithmic means, etc. Inequalities involving logarithmic mean with differences among other means are presented.

متن کامل

Sharp Two Parameter Bounds for the Logarithmic Mean and the Arithmetic–geometric Mean of Gauss

For fixed s 1 and t1,t2 ∈ (0,1/2) we prove that the inequalities G(t1a + (1− t1)b,t1b+(1− t1)a)A1−s(a,b) > AG(a,b) and G(t2a+(1− t2)b,t2b+(1− t2)a)A1−s(a,b) > L(a,b) hold for all a,b > 0 with a = b if and only if t1 1/2− √ 2s/(4s) and t2 1/2− √ 6s/(6s) . Here G(a,b) , L(a,b) , A(a,b) and AG(a,b) are the geometric, logarithmic, arithmetic and arithmetic-geometric means of a and b , respectively....

متن کامل

New Bounds for the Identric Mean of Two Arguments

Given two positive real numbers x and y, let A(x, y), G(x, y), and I(x, y) denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let Kp(x, y) = p √ 2 3A p(x, y) + 13G p(x, y) for p > 0. In this note we prove that Kp(x, y) < I(x, y) for all positive real numbers x 6= y if and only if p ≤ 6/5, and that I(x, y) < Kp(x, y) for all positive real numbers x 6= y if and o...

متن کامل

Optimal Lower Generalized Logarithmic Mean Bound for the Seiffert Mean

Ying-Qing Song, Wei-Mao Qian, Yun-Liang Jiang, and Yu-Ming Chu 1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang, Hunan 413000, China 2 School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China 3 School of Information & Engineering, Huzhou Teachers College, Huzhou, Zhejiang 313000, China Correspondence should be addressed to Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2011

ISSN: 1846-579X

DOI: 10.7153/jmi-05-27