Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean
نویسندگان
چکیده
منابع مشابه
Two sharp double inequalities for Seiffert mean
* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we establish two new inequalities between the root-square, arithmetic, and Seiffert means. The achieved results are inspired by the paper of Seiffert (Die Wurzel, ...
متن کاملInequalities Among Logarithmic-Mean Measures
In this paper we shall consider some famous means such as arithmetic, harmonic, geometric, logarithmic means, etc. Inequalities involving logarithmic mean with differences among other means are presented.
متن کاملSharp Two Parameter Bounds for the Logarithmic Mean and the Arithmetic–geometric Mean of Gauss
For fixed s 1 and t1,t2 ∈ (0,1/2) we prove that the inequalities G(t1a + (1− t1)b,t1b+(1− t1)a)A1−s(a,b) > AG(a,b) and G(t2a+(1− t2)b,t2b+(1− t2)a)A1−s(a,b) > L(a,b) hold for all a,b > 0 with a = b if and only if t1 1/2− √ 2s/(4s) and t2 1/2− √ 6s/(6s) . Here G(a,b) , L(a,b) , A(a,b) and AG(a,b) are the geometric, logarithmic, arithmetic and arithmetic-geometric means of a and b , respectively....
متن کاملNew Bounds for the Identric Mean of Two Arguments
Given two positive real numbers x and y, let A(x, y), G(x, y), and I(x, y) denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let Kp(x, y) = p √ 2 3A p(x, y) + 13G p(x, y) for p > 0. In this note we prove that Kp(x, y) < I(x, y) for all positive real numbers x 6= y if and only if p ≤ 6/5, and that I(x, y) < Kp(x, y) for all positive real numbers x 6= y if and o...
متن کاملOptimal Lower Generalized Logarithmic Mean Bound for the Seiffert Mean
Ying-Qing Song, Wei-Mao Qian, Yun-Liang Jiang, and Yu-Ming Chu 1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang, Hunan 413000, China 2 School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China 3 School of Information & Engineering, Huzhou Teachers College, Huzhou, Zhejiang 313000, China Correspondence should be addressed to Y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2011
ISSN: 1846-579X
DOI: 10.7153/jmi-05-27